Исследование Земли из космоса - XXI век

В.В. Вишневский

ОПТИКА

дистанционного зондирования океана EEK 72 + 74 B 55

УДК 001 + 62 + 37 574(285,2+504,054:54)

Вишневский В.В. Оптика дистанционного зондирования океана. М. Академия наук о Земпе 2004 - 290 с

ISBN 5-93411-035-7

В книге обобщены сведения по оптике атмосферы, гидросферы и литосферы, физической и технической оптике, оптическим и оптико-электронным приборам для осуществления анализа, синтеза и оптимизации дистанционных технологий и технических систем оптического зондирования океана и объектов прибрежной зоны.

В ней приведены теоретические основы и линейно-системные модели фотографической и оптико-электронной съемки и дистанционного лазерного зондивования оксана. Показано практическое применение модельных систем для разработки оптико-электронных метолов и приборов измерения различных характеристик оксана. Ланы схемы технических систем

оптико-электронного зондирования и методы их энергетического расчета. Книга рассчитана на инженерно-технических и научных работников, занимающихся

солданием техничи и технологий вистенняющного зонангования на автофотогологистов и геофизиков, специалистов по исследованию природных ресурсов и охране окружающей среды и на студентов соответствующих специальностей, хорошо знакомых с физикой, оптикой и электроникой и интересующихся современными методами исследования океана.

От релакции. Владимир Владимирович Вишневский известный российский учёный стоявший в 70-х годах XX века у истоков формирования и разрешения новой тогда научной проблемы по дистанционному исследованию океана. Выпускник МВТУ им. Н.Э. Баумана он начал свою научную деятельность в ОКБ им. С.А. Лавочкина, а продолжил в Государственном оксанографическом институте и в Московском институте инженеров геолезии, аэпофотосъёмки и уартографии. Им опубликовано множество научных работ по исследованию, моделированию и синтезу оптических дистанционных методов исследования Мирового оксана с использованием средств аэрокосмической съёмки и лазерной техники, а разработанные технические решения защищены рядом авторских свидетельств и патентов Российской Федерации. На сегодня практически нет ни одного научного направления в этой области, где он не был бы первооткрывателем и не создал научной базы для дальнейших изысканий.

Его капитальный труд объединяет на единой физической и технической основе два крупнейших научных направления в области дистанционного зондирования по пассивной и активной съёмке океана. Поэтому данная монография может быть полезна действующим учёным для расширения и совершенствования исследований в этой области знаний.

От автора. Мне хочется посвятить эту монографию светлой памяти моего учителя, блестяшему педагогу и оптику, профессору, зав. кафедрой прикладной оптики МИЙГАиК Лмитрию Алексеевичу Романову, с которым я прошёл большую часть своего творческого пути. Я блаromaneu avan R.R. Illyneitynuv (1976 r.) avan H.M. Spevoneuv (1976 r.) avan K.H. Kounnaraеву (1991 г.), акад. М.Е. Виноградову (1991 г.) и Институту оптики атмосферы РАН (1990 г.) за оценку моих работ. Считаю своим долгом выразить искрениюю признательность д.т.н. В.К. Дебольскому, д.т.н. И.В. Скокову, д.т.н. А.С. Дубовику, д.ф.-м.н. Г.В. Матушевскому, д.ф.м.н. В.М. Захарову, д.ф.-м.н. Г.Н. Глазову, д.ф.-м.н. М.Л. Белову, д.ф.-м.н. Д.В. Позднякову, л.ф.-м.н. В.В. Козолёрову, д.ф.-м.н. В.И. Шмяльгаузену, д.ф.-м.н. С.А. Патину, д.ф.-м.н. Т.В. Кондранину, д.х.н. Н.Б. Зорову, д.б.н. В.И. Ведерникову, д.б.н. Б.В. Коновалову и др. за отзывы на мои работы и сделанные ими полезные замечания. Выражаю свою признательность и л.т.н. Г.А. Аванесову, л.т.н. Я.Л. Зиману, д.т.н. Г.Ф. Тулинову, д.ф.-м.н. В.С. Шаманаеву, д.ф.м.н. В.В. Фалееву, л.ф.-м.н. Ю.А. Гольдину, д.ф.-м.н. А.Ф. Бункину и акад. Ф.В. Бункину за научные материалы, предоставленные для монографии

Я благодарен Государственному комитету по науке и технике. Министерству промышленности, науки и технологий и Министерству образования и науки Российской Фелерации за многолетиюю поддержку моих проектов.

property TOMA HERE'S PASSIC SCHOOL

Книга-почтой. Алрес: 105064, Москва, Гороховский пер. 4. Акалемия наук о Земле

СОЛЕРЖАНИЕ.

		ВИЗУАЛЬН				
		РЕДЫ ДО СС				§ 15. 1
ECKU	TE	хнологий	ДИСТАНЦИ	OHH	ого	зигческ
ОНДИР	OBA	ния океан/			7	§ 16. E
JIABA	2.	РЕСУРСЫ	OKEAHA	и	их	ГЛАВ
истемные исследования14						ПРИЕ
1. Pecyn	CH OK	2383			14	30HF

- 8 2. Современные проблемы экологии гилпосфевы применительно к запачами зистанционного монито-§ 3. Природные воды как естественный индикатор со-
- 6 4. Системные исследования океана и оптимизация экологического экспресс - мониторинга объектов гиз-
- ГЛАВА З. ПРИМЕНЕНИЕ СОВРЕМЕННОЙ ТЕХНИКИ ОПТИЧЕСКОГО ЗОНДИРОВАНИЯ для природно-ресурсных и эколо-
- 8 5. Визуальные и визуально - инстоументальные на-
- 6. Метолы фетографической и пассивной оптико -Аэросъемка и гипрографическое лешифоирование.... Космические проекты, способы определения харак-
- тепистик полных экосистем и способы атмосферной короскими данных дистанционного зондироваmust § 7. Методы активной оптико-электронной съёмки или методы дазерного зонамрования... ГЛАВА 4. АТМОСФЕРА, ГИДРОСФЕРА И
- литосфера в формировании поля ЯРКОСТИ ЗЕМЛИ ПРИ ДИСТАНЦИОННОМ ЗОНДИРОВАНИИ: РАСПРОСТРАНЕНИЕ ОПТИческого излучения в природных
- СРЕЛАХ..... § 8. Теория переноса..... 56 8 9. Фотометрическая теория многократного рассея-
- HIER..... Волновая теорыя многократного рассевния. - 50 ГЛАВА 5. ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АТМОСФЕРЫ 62
- § 11. Физические молени атмосфены и ее первычных § 12. Рефракция электромагнитных воли. Молели вертикального профиля показателя преломления в атмо-
- § 13. Влияние турбулентности на распространение электромасцитных воли. Молели вертикального профиля структурной функции показателя преломления в § 14. Вклад газовых молекул и аэрозопей в ослабление электромагнитных воли. Модели вертикального про-
- филя градисита оптической толин молекуперной и Структурные и оптические характеристики атмо
 - сферного аэрозоля......77 Оптическая модель молекулярной системы атмо-
 - Оптические модели аэрозольных систем атмосфеnu80 Оптические молели рассемвающей атмесфе- сфесиой корректини и пешения облатных завая пистана 89

- 6 ГЛАВА 6 ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ НА..... Первичные оптические характеристики и их фи
 - ие молели.....
 - торичные оптические характеристики... А 7. ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ OFFERTOR HEREFAHOR
- ГЛАВА 8. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПАС-СИВНОЙ СЪЁМКИ ОКЕАНА (оптический лициа-
 - § 17. Оптико-механические и оптико-электронные уст-
 - ройства пассивного зондирования и их приёмные оп-8 18. Пифпактионная и пифпактионна-абеспационная оптические передаточные функции приемного объек-
 - тива системы дистанционного зондирования.......104 Частотно-контрастная карактеристика объектива
- § 19. Яркость природных сред и объектов в поле приемной оптической системы при плоской молели Земли. 19.1. Видиный - ближний инфракрасный участок
- Яркость излучения атмосферы......109
 - Модифицированные физические модели показателя поглошения и обратного рассеяния
- DOMBODINAL BOT 111 Коэффициент яркости плёнки ПАВ.......118
- 19.2. Инфракрасный участок спектра излучений -
- 20. Уравнения аэрокосмической съемки для энерге-
- тических расчётов и решения обратных задач дистан-\$ 21. Влижине ветрового волнения при аэрокосмиче-
- 21.1. Видимый - ближний инфракрасный участов conversa warrowewell 121
 - Приборы, метолика и результаты исследований яр-21.2. Инфракрасный участок спектра изгучений -
 - Приборы, методика и результаты исследований радиационной температуры встровых воли штормо-
- 6.22. Фильтрания поля впуссти природных объектов в атмосфере и океане в молели плоской Зем-
 - Яркость рассевиного в атмосфере издучения океа-132 Оптические перевология функция атмосферы 134
 - Яркость рассеянного в воде излучения диа окуана при наличии поверхностных ветровых
 - Оптическая передаточная функция океана при на-
- 23. Уравнения аэрокосмической съемки с учётом ОПФ атмосферы и океана для атмосферной и гиппо-

Влияние фотограмметрическом рефракции на оптическую передаточную функцию атмосферы. — 138 Влияние турбулентности атмосферы на её оптическую передаточную функцию. — 3 Влияние молекулярного и апровольного рассевныя в

точки для линейных и угловых координат природных объектов и формулы преобрасования полей врясети природных объектов в атвесфере произвольной стратификации. 147 Впость изглеения неполоополой атмесфера. 1470

агмосфера. 150 Коэффициент яркости природных вод без учета индуцированиюте излучения. 151 Коэффициент вриости попродных вод с учетом

ния... 154
§ 26. Структура фотометрических полей ископерака
заматорий Мирового окения... 156
ГЛАВА 9. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АКТИВНОЙ СЪЕМКИ ОКЕЛИ (дляерное зонакрование)... 161
§ 27. Оптико-мектронные устойства активного зон-

следований распространения видупированного издучения в воде. 175 Характеристики обратного издучения природнакт, вод при фотолюминесценции и комбинационном

§ 31. Влияние нелинейных явлений при неконтактном зондировании с использованием мощных лазе-

3 у развичных трёхнерного зощирования и решения обратных задач дистанционного зощарования и решения обратных задач дистанционного зощарования. 191 Пример практического применения ураниений вытиняюм дакомосмической съмым для описания пре-

§ 36. Принципы моделирования и исследования операций дистанционного эоцирования на основе лизийных систем и иходящих в ики лизибных элементов. 197 § 37. Конструкция модели пассивного зондирования

дели. 201 § 39. Конструкция модели активного зондирования океания. 202

Ливейко-системные характеристики элементов модели. 202 Выходиме функции линейной системы. 203

Линейно-системные характеристики злементов
одели 205
Выкодине функции динейной системы 206
ГААВА 11. СИНТЕЗ ОПТИЧЕСКИХ ДИСТАНЦИОННЫХ МЕТОДОВ ИЗМЕРЕНИЯ ХАРАКТЕ

РИСТИК ПОВЕРХНОСТИ, ТОЛЩИ ВОД И ДНА ОКЕАНА. 207 § 41. Основы модельного синтеза методов измере-

§ 43. Модели, методы и алгоритмы определения харак
теристих природных объектов с помощью пассивного
эсецирования 201
43.1. Измерение геометрических характери стих
Методы определения характеристик воли на по
верхности океана
Методы определения характеристик диа океа
ю
43.2. Методы определения температуры поверхно
сти океана
Одноволновый метод определения ТПО215
Двухпараметрические методы определени
TTIO
43.3. Методы определения гидрохимических, гид
робиологических и гидрооптических зарактери
CTHK
Инфенкрасный метод определения гидрохимиче
ских характеристик поверхности океански
BOX
Методы определения гидрохимических, гидробио
догических и гидрооптических характеристик вод
ных масс окенна с использованием спектрозональ
ной съёмки в видимом диапазоне
Алгоритмы определения концентрации хлоре
филла в океанских водах
Способы и алгоритмы атмосферной коррекция
данных дистанционного зондирования для оп
ределения характеристик водимх масс окса
на
Однопараметрический способ атмосферно
коррекции данных дистанционного зоидиро
вания для определения характеристик вод

ском способах атмосферной коррекцин. 238
43.4. Адаптивные технология пассинного зопларонамие. Оптимизацие параметров и авторизмое достанировного зопларования как основа технологий авроокиого зопларования как основа технологий авроокимительно паколения. 240

Выбор спектральной зовы дистанционного зовдирования дна океания.

Выбор спектральных зом дистанционного определения гидроонтических и гидробиологических характеристик океана.

Замера при замера при замера при замера при дифирационного опревыбор спектральных зом дистанционного опре-

мосферной коррекции при аэровосмаческой съёмке. 242 Основные задачи аэрокосмической съёмка с адаптационными свойствами. 25 Технопотические операции аэрокосмической събыки оксана и береговой зоны и функции отделаниях подсистем адагитацию (ОО дая их осуществонОсновы создания банка эталонных данных о параметрах этмосферы над оксаном... 248 § 44. Модели, методы н алгоритмы определения хароктеристик природных объектов с помощью лазерного зондирования. 249

Метод определения статистических характеронтик ветровак поли при радивально-руговим съдинирования. 250 Методы определения статистических характеростик ветровых воли без сканирования. 252 Методы определения размерат при денатирования 252 Методы определения размерат поверхности и див оказам с импульской модулецией закрипото зонатричения.

Методы определения рельефа поверхности и для океана с аналоговой модужкии влигрного зонашрующего излучения. 257 44.2. Методы определения гидрооптических харытеристик. 264

тольного поглощения взяеси мопской воды. - Оптические методы изучения охеанов и внутренних водоемов.

 Новосибится: Наука, 1979. с. 58-64. 500. Вишневский В.В. Способ дистанционного определения геофизических и геометрических характеристик океаносферы и устройство для его осуществления. Па-TEHT N/2045747 RU, MKU G 01 C 13/00, 11/00, pp. 12. 501. Sanses B.B., Markessey M.C. Timex E., Usomerманн Г. Определение оптических параметров земной поверхности, океана и атмосферы со спутников «Интеркосмос - - 20 и 21» - Исслед. Земли из космоса.

1985, No. 5, c. 18-29. 502. Физические аспекты дистанционного зондирова-

ния системы кокеди-атмосфера». /Под ред. М.С. Малvenicia M.: Havva 1981 c. 216 503. Якушенков Ю.Г., Луканцев В.Н., Колосов М.П. Методы борьбы с помехами в оптико-электронных

приборах. М. Радио и свять, 1981, - 180 с. 504. Афонов Е.И., Колчатина С.Ф. Оптическая казасификация цвета окезнеских вод на основе статистического анализа спектров яркости восходящего излучения. - Леп. в ВИНИТИ. 1986. №570-В 86 Леп. 36 с.

505. Gordon H.R. et al. Ocean color measurements. Advances in geophysics, 1985, v.27, p.297-333. 506. Bartolucci L.A. Robinson B.F. Silva L.F. Field Measurements of the Spectral. Response of Natural Wa-

ters. Photogrammetric Engineering and Remote Sensing. 1977, vol. XLIII, no.5, p. 595-598. 507. Папшинов С.В., Ли М.Е. Листанивопное зонтипование пространственных неоднородностей спектраль-

ной яркости морской поверхности.- Деп. в ВИНИТИ, 1986. №6915 - В 86 Леп., 86 с. 508. Патент 3144562 (CIIIA) НКИ 250-235. 509. Аванесса Г.А., Галеев А.А., Жуков Б.С., Зиман S.Jl., Murrochasco H.F. Ilnorur «Twoc-A», M.: «Иссле-

дования Земли из космоса», N 2, 1982, сс. 3-13. 510. Миогозональный сканер с конической пазагртной для исследования природных ресурсов. / Селиванов А.С., Караева М.К., Носов Б.И. и др. Исслед. Земли из

космоса, 1985, №1, с.66-72. 511. Авдюшкин М.И., Артемкин Е.Е., Емельянов В.Н., Михипов А.Е. Оптические свойства втисосфени или

499. Коновалов Б.В. Некоторые особенности спек- водной подстилающей поверхностью. Вопросы оптики атмосфены, М., Гиппометеонизат, 1980, с. 65-73 512. Шифрин К.С., Видлевальде Ю.В., Волгин В.М., Волков В.Н., Смилнов А. В. Оптические характеристики атмосфены над монем. - В км. Олтика морх и атмосфены. Изл. ГОИ. Ленинград 1984. с. 312-314. 513. Левин И.Н., Рапомыслыская Т.М., Шифпии К.С. К расчету яркости системы океан-атмосфера при дистанционном зондировании. Иссл.Земли из космоса.

1987, Nr.5, c.25-29. 514. Пелевон В. Н., Буполи Ю. Г. Измерение изключов элементарных площадок поверхности волнующегося моля.- В ки: Оптические исследования в океане и в

атмосфере над оксаном. М., изд. ИО АН СССР, 1975, с. 202.219 515. Оптика океана. Т. 2 - Прикладная оптика океана.

M.: eHaveas, 1983, 236 c. 516. Лонге-Хиггинс М.С. Статистический анализ случайной движущейся поверхности. Сборник «Ветровые nominated the committee of the Regions of M. Krighten M.

Иностр. дит-ра. 1962. с. 125-317. 517. Лонге-Хиггинс М.С. Статистическая геомотрия случайных поверхностей. Гилполинамическая исустейчивость. Пер. с англ/Под. ред. А.С. Монина. М.

Map. 1964, c.124-167. 518. Якушенков Ю.Г. Основы оттико-электронного приборостроения. М., Советское радио, 1977. с. 217. 519. Лазерный прибор с амплитудной аналоговой мо-

дуляцией излучения для измерения рельефа границы пазлена лиск спен. Известия вузов. Геолезия и аэпофотосъемка, 1982, №2. с.74-76. 520. Белов М.Л., Городинчев В.А., Комищев В.И., Стреналов Б.В. Обиаружение нефтяных загрязнений на

взволнованной молской поверхности с помощью трёхлучевого дазерного метода. Оптика атмосферы и охеа-NA. T.15. No.10, 2002, c. 900-901. 521. Белов М.Л., Берёзин С.В., Городинчев В.А., Козиниев В.И. Метол контроля толицины тонких плёнок

нефтепродуктов на водной поверхности, основанный на использовании лазера с перестранняемой длиной волим излучения. Оптика атмосферы и океана, т.15, Nr2, 2002, c.203-205.

В55 Вишневский В.В. Оптика дистанционного зондирования океана. М. Академия наук о 3eume 2004 - 200 c

Министерство РФ по делам печати, телерадиовещания и средств массовых телекоммуникаций JIP No 030381 Академия наук о Земле 105064, Москва, Гороховский пер.,4

Подписано в печать 05.03.2004. Формат 60 x 90¹/в. Обыби 36.3 п.п. Отпечатано ООО «Микоприит». Тираж 1200. Все права защищены. Никакая часть данного издания не может быть воспроизведена в какой-либо форме без письменного разрешения Акалемии наук о Земле. Излатели не висут ответственности за опцибки, полушенные авторами в работе.