УПРАВЛЕНИЕ КОСМИЧЕСКИМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ

Под редакцией докт. техн. наук, проф. В. А. Боднера

ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ Москва 1964

Книга знакомит читателя с основными принципами управления космическими летательными аппаратами. Она содержит три раздела, в которых рассматриваются основные свойства космических летательных аппаратов как объектов управления, описываются элементы систем управления и излагаются принципы построения и исследования таких систем. Особое внимание уделяется теории измерения параметров движения и управления угловыми движениями космических летательных аппаратов. В частности, рассматриваются вопросы применения гироскопических устройств и инфракрасной вертикали для построения базовой системы отсчета на борту космического летательного аппарата и проводится исследование пространственной ориентации аппарата с помощью двигателей-маховиков, Показывается возможность использования в целях управления гравитационного и магнитного полей Земли. Кратко рассмотрены основные принципиальные вопросы управления снижением космического летательного аппарата в атмосфере планеты.

Книга рассчитана на широкий круг инженерно-технических работников, специализирующихся в области автоматического управления. Она может быть использована также в качестве пособия для студентов и аспирантов соответствующих специальностей.

ОГЛАВЛЕНИЕ

Предисловие	Стр. 3 5
Раздел І	
КОСМИЧЕСКИЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ КАК ОБЪЕКТ УПРАВЛЕНИЯ	
Глава 1. Некоторые вопросы динамики движения центра масс	9
1.1. Виды космических летательных аппаратов	9 15 26 34
Глава 2. Динамика движений летательного аппарата вокруг центра масс 2.1. Ориентация летательного аппарата	57 65 76 84
Глава 3. Методы пассивной стабилизации	96
	98 104 108
Раздел II	
ЭЛЕМЕНТЫ СИСТЕМ УПРАВЛЕНИЯ	
Глава 4. Измерительные устройства	113
4.1. Измерительные устройства с использованием двухстепенного	
гироскопа	113
4.2. Измерительные устройства с использованием трехстепенного гироскопа	127
4.3. Акселерометры	162
4.4. Инфракрасные измерительные устройства	176
210; 120 p 100 100 100 100 100 100 100 100 100	196
	208
5.2. Счетно-решающие устройства	209 215 226
	233
6.1. Реактивные двигатели	234
6.2. Двигатели-маховики	245 253 258
VIA. "Sovine mine" Apinatomi	200

Раздел III

ПРИНЦИПЫ ПОСТРОЕНИЯ И ИССЛЕДОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ

Глава 7. Системы управления	. 264
7.1. Системы управления в космосе	. 265
7.2. Системы управления на активном участке	. 277
Глава 8. Исследование систем управления с реактивными двигателями и	1
моментным магнитоприводом	286
8.1. Система пропорционального управления с реактивными двига-	
телями	. 286
8.2. Релейная система с реактивными двигателями	. 295
8.3. Система управления с моментным магнитоприводом	. 316
Глава 9. Исследование систем управления с двигателями-маховиками.	326
9.1. Идеальная ориентация	326
9.2. Малые отклонения от базовой системы отсчета	. 336
	. 347
9.4. Система управления с учетом гравитационного момента	. 352
Глава 10. Проблемы управления космическим летательным аппаратом	ſ
при снижении в атмосфере	359
10.1. Динамика снижения космического летательного аппарата.	360
10.2. Принципы построения систем управления снижением	. 383
10.3. Возможные схемы систем управления	. 386
	. 397
	. 401